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L INTRODUCTION

As a part of Integrated Program Office (IPO) program, NPOESS will provide an enduring
capability to measure atmospheric, land, and ocean environmental parameters on a global
basis. The system will provide timely, accurate weather and environmental data to
weather forecasters, military, civilian leaders, and the scientific community. NPOESS
converges the National Oceanic and Atmospheric Administration’s (NOAA) Polar
Operational Environmental Satellites (POES) and the Defense Department’s Defense
Meteorological Satellite Program (DMSP) into a single system. NPOESS will operate in
near circular, sun-synchronous orbit and is scheduled to fly in the 2007-2010 time frame.
A host of satellites with sensors operating in different frequency regions of the
electromagnetic spectrum will have equatorial node crossings at 0530, 0930 and 1330
local times. The VIIRS and CMIS will form an important part of NPOESS and will share
the same platform. The VIIRS and CMIS will be successors in technology to AVHRR
and SSM/I, respectively. There are about five dozens of parameters to be retrieved from
the remote sensing data collected by NPOESS and among them six are declared as ‘key’
parameters (NPOESS, 1999). The ‘key’ parameters are particularly important to
NPOESS mission and soil moisture is one of the ‘key’ parameters. In this paper, we
describe a synergistic optical/IR and microwave approach that is being developed for
NPOESS for estimating soil moisture at a kilometer resolution.

Recent studies have shown the effects of soil moisture on the feedbacks between land-
surface and atmospheric processes that lead to climate irregularities (Brubaker and
Entekhabi, 1996; Delworth and Manabe, 1989). Simulations with Global Climate Models
(GCM) have shown that improved characterizations of surface soil moisture and other
land surface parameters in numerical weather prediction models can lead to both weather
and climate forecast improvement (Beljaars et al., 1996). Soil moisture is also an
important component in the terrestrial ecosystem processes. It provides a link between
the terrestrial surface and the atmosphere through its effects on surface energy and soil
moisture fluxes (Sellers et al., 1986). Thus, the ability to determine the spatial and
temporal distribution of soil moisture would be of significant help in understanding the
Earth as an integrated system. Additionally, the timely information of soil moisture is
also used by the military for the accurate planning of infantry and vehicular traffic in the
remote areas. NPOESS will provide such a capability on an operational and continuous
basis.

Currently, soil moisture data product is not available globally from any of the spaceborn
missions. A few surrogates of soil moisture such as soil wetness, flood index, crop index,
Antecedent Precipitation Index (API), etc. are however available. These surrogates are
insufficient substitutes of soil moisture estimates and provide crude and qualitative
information about the soil moisture. Both microwave and optical/IR remote sensing
techniques are capable of sensing soil moisture, but the implementation of these sensing
techniques from space platform for global soil moisture estimation has been lacking.
Microwave remote sensing has the potential to provide a direct measure of soil moisture.
It also has the advantage of all-weather observations and penetration into vegetation




canopy for the soil moisture sensing. However, there are many reasons as to why
microwave techniques have not been applied for the global estimation of soil moisture.
First, the spatial resolution of passive microwave sensors from space is poor, second, the
current satellite channels do not provide adequate soil moisture sensitivity for majority of
vegetation covers and the third, the ‘a priori’ information required in the existing soil
moisture estimation algorithms can not be obtained globally. In controlled experiments,
longer wavelengths (e.g. L-band) have been used since they provide adequate sensitivity
to soil moisture under most vegetation covers. However, longer wavelengths require
large antennas in orbit and large rotating antennas in orbit are an engineering challenge
and the solutions are expensive. The problem scales inversely with frequency and that is
why an imaging radiometer at L-band has not been flown in space. In fact, the resolution
available for passive microwave remote sensing from space has improved very little from
its beginnings with the launch of the Electronically Scanned Microwave Radiometer
(ESMR) in 1972. Consequently, despite the success of microwave remote sensing of soil
moisture in controlled environments, few efforts have been made to extend soil moisture
remote sensing to global scale. Presently, neither the microwave sensor technology is
able to provide high-resolution data nor the microwave algorithms employing solely
microwave data are robust enough to estimate soil moisture without ‘a priori’
information.

(In this paper, the terms low resolution, microwave resolution, 25-km resolution are used
interchangeably. Similarly, the terms high resolution, optical resolution, 1-km resolution
are also used interchangeably).

IL HISTORICAL PERSPECTIVE

A number of techniques spanning across the whole electromagnetic spectrum have been
used to sense soil moisture. However, techniques in the optical/IR and microwave
frequency regimes have attracted more attention. The surface radiant temperature of bare
soil illuminated by sunlight is highly correlated with soil wetness (see e.g. Idso et al.,
1975). The spatial variations of the radiant temperature are strongly dependent on the
fraction of the bare soil viewed by the radiometer and surface soil water contents.
Vegetation, however, complicates the relationship. A rigorous way to implore this
relationship is through the modeling of the Soil Vegetation Atmosphere Transfer (SVAT)
of energy using an energy budget approach. However, Carlson et al. (1994) and Gillies et
al. (1997) were able to generate regression relations among NDVI, soil moisture, and soil
temperature by careful analyses of available data. These results were reaffirmed by the
University of Pennsylvania SVAT model (Carlson et al., 1995). A unique relationship
between surface soil moisture availability and radiant temperature does not exist in the
presence of vegetation cover, but the relative variations in NDVI and temperature show a
fairly stable relationship to soil moisture availability over a wide range of climatic
conditions and land surface types (Carlson et al., 1994).

Optical/IR sensing techniques also provide a good spatial resolution and efforts were
made in seventies to use them for soil moisture estimation (Idso et al., 1975; Idso et al.,
1976; Price, 1977). However, the returns from optical/IR sensors are equally sensitive to




the soil types and it is difficult to decouple the two signatures. In addition, the soil
moisture estimates derived from optical/IR sensors require surface micrometeorological
and atmospheric information that is not routinely available. Controlled experiments
continue to show that the optical/IR approach has the potential to sense soil moisture, but
the implementation particularly from space, has not been accomplished so far. Fresh
attempts such as those by Cracknell and Xue (1996) are underway for the determination
of thermal inertia from space. A soil moisture product has not been slated for the future
optical/IR missions so far,

Passive microwave remote sensing has been widely used to provide a quantitative, direct
estimate of soil moisture (Njoku and Li, 1999; Jackson et al., 1982; Engman, 1991). The
soil moisture maps obtained in Southern Great Plains experiment (SGP-97), Washita-92,
Moeonsoon-90 and First ISLSCP Field Experiment (FIFE) were all provided by passive
sensors operating at L-band. In most cases, a simplified radiative transfer model is
inverted to obtain Fresnel reflectivity. ‘A priori” information of vegetation optical depth
and root mean square (RMS) height of the sail surface, is required to estimate soil
moisture (O’Neill et al., 1996). However, the channel frequencies and the spatial
resolution of the current generations of spaceborn microwave radiometers are not
optimal for land remote sensing. SSM/I launched in 1987 has the lowest frequency of
19.4 GHz and a spatial resolution of ~56 km. The Scanning Multichannel Microwave
Radiometer (SMMR) launched on the Nimbus-7 satellite in 1978, had a spatial resolution
of ~150 km at its lowest frequency of 6.6 GHz. Lower frequencies such as L-band are
preferred for soil moisture since they provide better sensitivity to soil moisture for the
vegetation cover. But, because of practical problems of supporting a large size low-
frequency antenna in space, the prospectus of having a spaceborn low-frequency
microwave sensor, remains uncertain.

A few attempts have been made to use microwave satellite data for the soil moisture
estimation. Van de Griend and Owe (1993) and Owe et al. (1992) have written series of
paper on the characterization of soil moisture and vegetation properties from SMMR data
over Southern Africa. Jackson (1997) used SSM/I data at 19.4 GHz together with ‘a
priori’ values of single scattering albedo and optical depth, to estimate soil moisture for a
grass-dominated subhumid area near Oklahoma . In a recent paper, Njoku and Li (1999)
have demonstrated an estimation approach that can be used to derive soil moisture from
Advanced Microwave Scanning Radiometer (AMSR) scheduled to fly on Earth
Observing System (EOS) PM platform in 2001. The lowest frequency on AMSR will be
6.9 GHz and the footprint size of 43km x 75km. The microwave equivalent of thermal
inertia, known as radiobrightness thermal inertia, has also been used to estimate soil
moisture from satellite microwave data for the controlled experiments (England et al.,
1992). None of the above techniques address the problem of poor resolution of the
microwave radiometers.

1L METHOD

To achieve accuracy and high spatial resolution, it seems natural to have a technique that
combines the strengths of microwave as well as optical/IR remote sensing approaches for




the soil moisture estimation. This paper describes a two-step approach to obtain
operational, reasonably accurate, high-resolution soil moisture by linking microwave-
derived soil moisture estimates with optical/IR parameters. First, the soil moisture at low
resolution is retrieved from microwave data. This is achieved by inverting the ratio of
horizontal to vertical Fresnel reflectivities. The technique is suitable for satellite remote
sensing and does not require ‘a priori’ information. The second step involves relating the
microwave-derived soil moisture to NDVI, temperature and albedo. This is done through
regression following the Carlson’s work (http://www .essc.psu.edu/~tnc/). These
regression relations, in conjunction with high resolution NDVI, LST, and albedo are then
regressed backward to obtain soil moisture at high resolution. The enhancement of spatial
resolution of soil moisture from ~25 km to ~1 km, is an important development with
wide applications.

The flowchart diagram of the soil moisture estimation algorithm is given in Figure 1, and
details of the above steps are described in the following sections.

This soil moisture estimation technique is later applied to data from SSMI and AVHRR
over the SGP-97 experimental region, near Oklahoma (Section IV). In-situ soil moisture
(0-5 cm deep) collected during the SGP-97 experiment is compared against the
predictions. An error and sensitivity analysis has also been performed on the estimation
procedure (Section V). For the microwave part, error analysis is carried out using an
emission model that is robust and has been validated for a variety of canopy covers. For
the high-resolution estimation part, error analysis is performed using SSM/I and AVHRR
data. Finally, the limitations of point measurements for validation of satellite soil
moisture are also discussed.

A. Soil Moisture at Low Resolution (Microwave Estimation of Soil Moisture)
Microwave radiometer response (Chauhan et al. 1994) computed by the forward model
(Appendix A) is inverted for the determination of soil moisture. The full-scale model is
too complicated to be inverted. It is simplified for weak vegetation cover under the
assumption that the vegetation scattering is negligibly small. In addition, it is assumed
that the scattering from the rough ground surface is also negligibly small. Therefore, the
brightness temperature 7, of a vegetated and/or a rough surface is written as
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where qu ' denotes the Fresnel reflectivity of the flat surface and is a measure of soil
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moisture. In above equation, 7, k, s, & are vegetation optical depth, free-space

propagation constant, rms height of the rough surface, and view angle respectively. The
suffix q denotes polarization and can be either h (horizontal) or v (vertical) and T is the

physical temperature of the scene. If data from both horizontal and vertical polarizations
is used, then Eq. (1) can be rewritten as (Chauhan, 2001),
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The suffix h and v refers to horizontal and vertical polarization respectively. It is noticed
that Eq. (2) is independent of root mean square roughness height (s) and depend only on

the difference between the vegetation optical depths at like polarizations i.e. (7,-7,).
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Therefore, if 7,, 7,, T, (r,~T,) are known, then
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can be calculated from Eq. (2)

which can be converted to yield soil moisture. An examination of canopy data suggests
that scatterers in weaker vegetation do not have any dominant angular orientations.
Consequently, horizontal and vertical optical depth gets closer to one another. In the
work by van de Griend and Owe (1993) on soil moisture from Savanna types of
vegetation, it is assumed that 7, —7, =0 for the SSM/I data at 19.4 GHz and 37 GHz.

Therefore, assuming that 7, —7, =0 for weak vegetation, Eq. (2) is further simplified to
T-1,] |R,[
F=T,
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Since microwave brightness temperature and the physical temperature can be measured

(3)
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directly by remote sensing, E’“—can be calculated from Eq. (3) without any ‘a priori’

information about the canopy or the ground. The reflection coefficients in Eq. (3) are
expressed in analytical form as
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In above equations & is the real part of soil dielectric constant. The imaginary part of

€, is small and therefore ignored (Chauhan, 1997) for the soil moisture retrievals. After

doing a little bit of algebra, £, can be expressed from Eqs. (4) and (5) as a function of

R
E"— (Chauhan 2001). Finally, the volumetric soil moisture is obtained from £, by using
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the empirical relationship given by Hallikainen et al. (1985).

The microwave frequencies from satellites have limited capability to penetrate
vegetation. Consequently, the application of microwave algorithm to 19.4 GHz data from
SSM/1 will be limited to vegetation having NDVI less than or equal to 0.4. Based on the




work of Myneni et al. (1997), NDVI of 0.4 translates to LAI of 1-2 for most biomes
(Figure 5a in Myneni et al. [1997]). The limit on NDVI will change if lower microwave
frequencies such as C or L-band are available for satellite remote sensing. The dual-
polarization technique described here is particularly useful for global soil moisture
estimation because the technique can operate without the global estimates of ground and
vegetation information.

B. Soil Moisture at High Resolution

Soil moisture coupling to land-surface interactions has been used in the past to quantify
soil moisture signatures (Carlson et al., 1994; Nemani et al., 1993). NDVI and soil
temperature are proven indicators of the vegetative and thermal potential of the land
surface. However, the vegetation and soil temperature have a complicated dependence on
soil moisture. Careful analyses of data by Carlson et al., (1994) and Gillies et al., (1997)
have shown that there can be a unique relationship among soil moisture, NDVI, and soil
temperature for a given region. The results were validated using data analyzed from three
experiments conducted at Mahantango, Kansas and in Costa Rica (Carlson et al., 1994).
In addition, such relationships are also confirmed by theoretical studies using a soil-
vegetation-atmosphere-transfer (SVAT) model.

Figure 2 represents a schematic description of the relationship, sometimes referred to as
the ‘universal triangle’. Here, soil moisture varies from right (low value) to left (high
value) in the triangle. The abscissa and the ordinate are appropriately scaled versions of
temperature and NDVI respectively such that

T = Z 6
T 7, i
. NDVI — V
NDVI = =D I” (7)
NDVI_— NDVI,

where T and NDVI are observed soil temperature and NDVI respectively, and the
subscripts o and s stand for minimum and maximum values. Carlson et al. (1994) found
that the relationship between soil moisture M, NDVI", and T" can be expressed throu gha
regression formula such as

M = iianDW"“T'm (8)

=0 j=0

Carlson (1998) argued that a single polynomial such as the one above represents a wide
range of surface climate conditions and land surface types. The second or third order
polynomial gives a reasonable representation of the data.

To apply Carlson’s concept of ‘universal triangle’ in the present context, the left-hand
side in Eq. (8) is replaced by microwave-derived soil moisture. In addition to NDVI and
T on the right-hand side of Eq. (8), surface albedo (A) is added to strengthen the




relationship between the high end of soil moisture and measurable land pdramctcrs
Therefore, Eq. (8) is modified to:
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Expanding Eq. (9) to get a second order polynomial, one obtain
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In the above expansion, the third order terms have been ignored. We have employed Eq.
(10) for most of the analysis presented in this paper.

IV. APPLICATION TO SSM/I AND AVHRR DATA

A. Soil Moisture Mapping

The soil moisture algorithm is applied to data over a mid-west region of United States
(33°N to 38°N, -100°W to -96°W) covering the Southern Great Plain (SGP) experiment
region. This experiment was conducted in June-July of 1997 and was designed to
measure, estimate spatial and temporal variation in soil moisture and other hydrologic
variables. The bulk of this region is grassland along with short vegetation in the
agricultural fields. Complete details of the experiment and data can be found at
http://hydrolab.arsusda.gov/SGP-97.

For the present analysis, satellite data from AVHRR and SSM/I (frequency=19.4 GHz)
over the SGP-97 experiment region were acquired for four relatively cloud free days.
SSM/I data are at 25-km resolution on cylindrical equal area projection true at 30N and
30S, and AVHRR data are Level 1B with resolution of about 1-km. The LST, NDVI and
surface albedo are calculated from AVHRR, Level 1B data that has a resolution close to
1-km. A simple split window method (Price, 1984) employing data from Channel 4 and 5
of AVHRR is used for this purpose. Similarly, surface albedo is calculated by scaling
data from Channel 4 and 5 of AVHRR. Both the LST and NDVI are aggregated to a scale
of 25-km resolution for their use in the microwave algorithm. Dual polarization method
discussed earlier in Section IIIA is applied to brightness temperature (from SSM/I) and
aggregated LST to compute soil moisture at 25-km resolution. Since the microwave
algorithm is valid for lightly vegetated area, we have limited its application to vegetation
covers with NDVI of 0.4. For cloudy pixels, we have used a simplified cloud mask that
involves masking cloud pixels based on the visible channel of AVHRR. A new cloud
mask for the NPOESS is being developed and will be incorporated in later studies.
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Figure 3 shows 25-km resolution soil moisture maps for the SGP-97 region for June 29,
June 30, July 1, July 2 of 1997. The spatial variations in soil moisture are clearly seen in
all the four days. The temporal variations are less prominent and will be discussed in
more details in the next section. The eastern part in the SSM/I derived soil moisture
image on June 30, July 1-2 is shaded gray because of non-availability of SSM/I data.
Generally, the grey/black regions in the map are the areas where soil moisture is not
computed. There can be variety of reasons for this; such as high NDVI, corrupted data
because of clouds, corrupted data from SSM/], etc. It is noticed that soil moisture in Fig.
3 exhibits a dry-to-moderate level of moisture with individual pixel values ranging from
S to 15 percent of volumetric soil moisture. Note that the soil moisture shown in these
maps represents the moisture from a very thin soil layer because the sensing frequency is
19.4 GHz. The soil moisture information is also depicted differently in Fig. 4 where soil
moisture values of individual pixels are plotted for four days.

To estimate soil moisture at 1-km resolution, first a system of linear equations is set up
between SSM/I-derived soil moisture and aggregated NDVI, aggregated albedo,
aggregated LST (Eqs. 9,10) for all the pixels in the SGP-97 region. The system is solved
and the regression coefficients a, (Eq.9) for the SGP-97 region are determined. To

check the accuracy of the regression coefficients, the parameters NDVI, albedo, T are
used in conjunction with calculated a,, in Eq. (9) to compute soil moisture.The RMS

error between the regression-derived soil moisture and the SSM/I-derived soil moisture is
calculated. In the present case this RMS error is quite small ~ 0.016 for all days. The
soil moisture values at 1-km are then obtained by substituting 1-km scale NDVI, albedo,
and LST in the right-hand side of Eq. (10) alongwith regression coefficient a

calculated earlier. Figure 5 shows [-km resolution soil moisture maps for the SGP-97
region for June 29, June 30, July 1, July 2 of 1997. A visual inspection of images shown
in Figs. 3 and 5 shows that there is a close resemblance between the soil moisture spatial
patterns and the quantitative estimates. Clearly, the 1-km soil moisture image shows
much more details than the 25-km soil moisture image. The patches of no data in the
northern part on June 29 are due to the cloud mask applied to AVHRR data. For
comparison sake, 1-km scale soil moisture for individual pixels are been plotted in Fig. 6.
The mean and spread of 1-km soil moisture values (Fig. 6) compares closely to that of
25-km soil moisture values (Fig. 4).

B. Comparison with in-situ Measurements

Validation of soil moisture estimation results is difficult and particularly so if satellite
data is involved. The difficulty arises not only in the estimation process but also in the
measurements of in-situ soil moisture. Several issues are involved in soil moisture
measurements. Microwave sensors measure soil moisture in the topmost soil layer (1/10
to 1/4 of a wavelength). At 19 GHz, this layer can be about 0.1-0.4 cm deep. The
penetration of microwave signal depends on soil moisture itself. In view of this, it is
difficult to decide the depth of soil samples for the in-situ measurements. Soil moisture
also changes very rapidly in the topmost soil layer. In addition, there are practical
problems in collecting soil samples that are only 0.1-0.4 cm deep. Still further the spatial
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distribution of soil moisture depends on soil parameters which are not distributed
homogeneously in the area. As a result, the average soil moisture computed from point
measurements within a footprint does not give an accurate representation of the soil
moisture in the footprint. In view of these uncertainties, a definite conclusion can not be
drawn from comparison between in-situ point measurements and soil moisture
predictions from satellite data. Nonetheless, the following comparison is made to
illustrate these issues.

In-situ point measurements of 0-5 cm deep gravimetric soil moisture were made at three
locations i.e. Little Washita (LW), El Reno (ER) and Central Facility (CF). The relative
locations of these sites are shown in Figure 7. At each of the locations, several fields were
selected, and within each field, several measurements of soil moisture were made almost
daily for about a month. Efforts were made to collect daily soil moisture samples in the
same general vicinity to facilitate temporal comparisons of soil moisture. A specific
pattern to walk in and out of the fields was followed.

Figure 8 shows the measured soil moisture spatial variability for LW on the four days. It
is noticed that there is a definite pattern in spatial variability of soil moisture that repeats
itself for all the four days. This variability could be the result of soil properties of the
area. A similar variability pattern is also noticed in the soil moisture data from other
locations at ER and CF. The plots showing spatial variability at ER and CF are not given
here.

Despite spatial variability at LW, ER and CF, the soil moisture measurements from all
samples for a particular location on a given day are averaged and the results are plotted in
Figure 9(a). Except for CF on June 29, soil moisture decreases from June 29 to July 2. It
is also noticed that soil moisture in the northern location (i.e. CF and ER) is higher than
soil moisture in the southern location i.e. at LW,

To compare these in-situ averaged soil moisture with the soil moisture retrieved from
satellite data, the soil moisture estimates from 1-km resolution are averaged over a Skm x
S5km grid area for each of the LW, ER and CF locations. The 5km x 5km area could
contain roads and buildings and thus the pixels in these areas do not correspond to the
data points used in the in-situ measurements. Figure 9(b) shows a plot of volumetric, 1-
km resolution soil moisture predictions for the four days at the three locations. A
comparison of figures 9(a) and 9(b) shows that the temporal trend in the predicted soil
moisture agrees with the generally decreasing soil moisture trend in the measurements.
Also, a lower soil moisture value at the southernmost location (LW) is in agreement with
the measurements. It should be mentioned here that the predicted soil moisture is for skin
layer only and therefore, comparison of its magnitude with in-situ measurements is not
warranted.

IV.  ERROR ANALYSIS AND SENSITIVITY STUDY

Since a firm comparison between the in-situ soil moisture and satellite-derived soil
moisture is difficult to make, an estimate of different kinds of errors in the proposed
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retrieval processes has been done to help understand the error budget. The total error is
broken down into respective errors in the low-resolution (microwave) and high-resolution
(optical/IR) parts of the algorithm. Errors from each of these parts have been further
subdivided to the next level for simplifying the error budget calculation. Appendix B
provides the definitions of accuracy, precision and uncertainty used in the error budget
calculations.

A. Error in Soil Moisture Estimation at the Microwave Resolution

Total error in the microwave estimation of soil moisture is composed of two separate
errors. The first error is the microwave algorithm error and is due to the inversion
procedure employed to retrieve soil moisture from the microwave data. The second error
is contributed by the data accuracy and precision.

(i) Microwave Algorithm Error ( E, ): As described in Section IIIA, a radiative transfer

model has been used to invert dual-polarized microwave brightness temperature. To
estimate error in this procedure, we have generated microwave brightness temperature
data for four different types of land surfaces using Peake’s modeling approach (Peake,
1959). The emission model incorporates a discrete scatter model and a Kirchhoff’s model
for vegetation and rough surface, respectively. It has been used extensively in the forward
modeling of agricultural crops (Chauhan et al., 1994), grassland (Saatchi et al., 1994) and
forest canopies (Chauhan et al., 1999). A brief description of the emission model is given
in the Appendix A. This model is used to generate different surface types such as: bare
and smooth, bare with low roughness (s=1 cm and 1=10 cm), bare and rough (s=3 cm and
I=10 ¢m), and vegetated (Leaf Area Index, LAI=3). In above, s denotes the RMS surface
height of the rough surface and |1 is the correlation length of the surface. For vegetated
terrain, the canopy parameters from a typical soybean field are used for the modeling
(Table I). The leaf dimensions and density of the soybean canopy are equivalent to a
canopy of LAI=3. The forward model results are inverted using the dual polarization
technique described earlier. Figure 10 shows the retrieved results for the four types of
terrain. The RMS errors in the soil moisture estimation are 3.6, 3.7, 0.5 percent for
vegetated, bare rough and bare low-roughness terrain, respectively. The RMS error for
the smooth bare surface is negligibly small. The estimation has been carried out for the
soil moisture range of 0 - 35 percent.

(ii) Error Due to Data Accuracy and Precision ( E, , ): For the purpose of the analysis, it

is assumed that the accuracy and precision in temperature (LST as well as brightness
temperature) are 1K and 0.5K, respectively (NPOESS, 1999). To calculate error in the
soil moisture estimation due to data accuracies, temperatures are biased by + 1K.
Similarly, to calculate errors due to data precision, temperatures are perturbed by 0.5K
around their mean values. These new temperatures are then used in the microwave
algorithm to estimate soil moisture. It is found that the root mean square error in soil
moisture estimates because of above accuracy and precision margin is on the order of 1-2
percent. This was expected because soil moisture in the dual-polarized algorithm depends
on (T-Th)/(T-Tv). Because of ratioing, the effect of accuracy and precision of
temperature on soil moisture is minimal. Similar analysis was also carried out in details
in Chauhan (2001).
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B. Error in Soil Moisture Estimation at High Resolution =¥
There are again two sources of errors in the soil moisture estimation at high resolution
(Section IIIB); first is the regression error ( £, ), and the second is precision error ( £, )

due to NDVI, LST and Albedo. To estimate E | , a system of linear equations (Equation

10) is set up using SSM/I-derived soil moisture, aggregated NDVI, albedo, and LST for
the scene area. The system is solved, and regression coefficients for the second order
polynomial fit are determined. The regression coefficients, and aggregated optical/IR
parameters (NDVI, albedo, and LST) are used in the right-hand side of Eq. (10) to obtain
25-km resolution soil moisture values for the scene. The regression error is computed as
the RMS error between the microwave soil moisture using a regression coefficient and a
previous direct estimate of soil moisture from the SSM/I data. For this particular scene,
the regression error ( £, ) is calculated to be 1.6 percent. Analysis performed on other

scenes also produced the same order of regression error (Chauhan et al., 1998). The
relatively lower value of regression error indicates that there are enough training data
points in regression and the regression coefficients are reasonable.

To compute E ,, we flowed down precision error in LST, NDVI, and albedo in the high-

resolution soil moisture algorithm. We have assumed precision (P) in LST, albedo, NDVI
as 0.5K, 0.020, 0.02, respectively. These precision numbers are taken directly from the
Sensor Requirement Document of NPOESS (NPOESS, 1999). One-by-one, the three
inputs are perturbed randomly around their mean value by * P. The soil moisture
resulting from perturbed input to Eq. (10) are compared to that obtained from the
unperturbed inputs. The root mean square error ( E,, ) due to precision error in LST,

albedo and NDVTI are computed to be 0.338, 0.722 and 1.57 percent, respectively.

An examination of Eq. (10) reveals that the microwave-derived soil moisture M is related
to the scene variations in NDVI | albedo and LST and not to their absolute values. The
parameters NDVI*, A* and T* in Egs. (6), (7), and (10) define these relative variations.
Therefore, accuracy errors (or bias) of NDVI, LST and albedo is likely to have little
effect on the high-resolution soil moisture estimation. Consequently, we have not
calculated the effect of accuracy errors in LST, NDVI and albedo on the soil moisture
estimation procedure for high resolution.

Assuming that the errors are uncorrelated, the total error budget for soil moisture can now

be given as \/Efr, +E!, + EL +E., . Based on the above error budget calculations, the

total error in soil moisture estimation (final product) using the current technique is less
than 5 percent. For bare smooth surface, the error is lesser. This error is well within the
requirements set by NPOESS for the soil moisture estimation. Note that all but the
microwave algorithm errors are computed for the satellite data. A summary of all the
errors is given in Table II. Clearly, the algorithm error is the largest error source. In the

present case, this error is estimated from simulated data and can go higher for real data
from satellites.

12




VL. DISCUSSION =

The aforementioned process for high-resolution soil moisture determination involves a
synergistic analysis of microwave-optical/IR data. The algorithm combines the traditional
accuracy of microwave sensors for soil moisture sensing with the high-resolution
capability of optical/IR sensors to determine soil moisture estimates at high-resolution.
An important component of the operational retrieval process for operational use is the use
of dual-polarization microwave data for obtaining surface reflectivity, which is later
converted to soil moisture. The dual-polarization technique used here is a departure from
single polarization techniques that have been used for most of the past soil moisture
estimation work. The technique is suitable for global soil moisture estimation from
satellite data because it does not require ‘a priori’ information about vegetation and
surface roughness condition. Since SSM/1 frequency (19.4 GHz) can not penetrate all
vegetated surfaces, NDVI values are used to limit the application of the dual polarization
algorithm to the weakly vegetated pixels.

Vegetation has been assumed as an absorbing medium only and the scattering from
vegetation is ignored. Incoherent scattering from the rough surfaces 1s also not accounted
for in the inversion process. Most of the studies involving soil moisture estimation from
large scale experiments, such as MACHYDRO-90, Washita-92, Washita-94, SGP-97,
etc., have made similar assumptions and found reasonable agreement with in-situ soil
moisture data. The proposed dual polarization method for the microwave soil moisture is
expected to be an improvement over the previous techniques because incoherent
scattering effects are minimized in the ratioing process.

The signals from SSM/l and AVHRR may not be sensing soil moisture to the same
vertical depth. As a result, their soil moisture estimates can differ. Microwave
radiometers measure soil moisture in the topmost soil layer. At 19 GHz, this layer can be
less than half a centimeter deep. Strictly speaking, the ‘universal triangle’ method relates
soil moisture availability (ratio of soil water content to field capacity) to radiant
temperature and fractional vegetation cover (~NDVI*?). It is possible that the estimates
of soil moisture using the above two methods are different. But in the approach outlined
here, the ‘universal triangle’ concept is used to establish relations between soil moisture,
temperature, albedo, and NDVI. This should have a minimal effect on the process of
disaggregation employed here to enhance spatial resolution of the soil moisture.

The technique described here to link low-resolution soil moisture with the land
parameters has a definite theoretical basis in the surface energy balance technique. The
‘universal triangle’ is the result of numerous simulations carried out using the soil
vegetation atmosphere transfer modeling. The simulations have also been validated using
data from different field experiments (Gillies et al. 1997). The SVAT simulations
requires micrometeorological and other data and early simulations were conducted using
data collected at a field campaign in Mahantango, during MACHY DRO-90 experiment.
For the remote sensing applications it was found that that a regression relation like
equation (8) gives results similar to those obtained by SVAT model

(http://www essc.psu.edu/~tnc). Sensitivity tests have shown that the distribution of
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isopleths inside the triangle is insensitive to the initial conditions and so one can get by
using a single polynomial to represent a wide range of surface climate conditions and
land surface types (Carlson, 1998).

The regression error can vary from scene to scene and also depends on the size of the
scene. In addition, if the training area (where regression coefficients are derived) and the
test area (where regression is applied) are the same, the regression error is small. For the
NPOESS soil moisture, it is proposed to determine separate regression coefficients for
each contiguous scene in the orbit. This will ensure reduced regression error. In cases,
where the swath widths of VIIRS and CMIS do not overlap, the regression coefficients
from adjacent scene will be used and as a result, the error in soil moisture estimation will
be higher.

Eq. (9) represents nth order polynomial fit between the microwave-derived soil moisture,
NDVI, LST, and albedo. We performed a sensitivity analysis on the order of polynomial
used in the regression by using a lower and a higher-order polynomial in Eq. (9). A third
order polynomial with seventeen terms was found to be more accurate but less flexible to
extrapolate soil moisture values outside the range for which the regression coefficients
are derived. On the other hand, a first order polynomial with four terms was less accurate,
but it could extrapolate soil moisture values over a wider soil moisture range. We
conclude that a second order polynomial is a reasonable fit in Eq. (9).
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APPENDIX A
MICROWAVE EMISSION MODEL FOR LAND

Microwave radiometer response is obtained by summing up all the energy over the
hemisphere above the canopy (Fig. Al). We have followed Peake’s approach (1959) that
assumes thermal equilibrium so that energy absorbed is equal to the energy emitted. The
emitted energy or emissivity is expressed as one minus the scattering albedo (Ulaby et al.,
1982), and therefore, the microwave brightness temperature Ty (g € h,v ) can be

expressed as

T,=(1-W,)T (A1)
where T is physical temperature of the scene, W, is the scattering albedo and is made up
of specular and diffused components i.e. W, =W;‘W +W;”"' , where wquxr and W;”“ are

diffused and specular albedos respectively (Fig. Al). These albedos are scene albedos
and are different from the single scattering albedo. The specular albedo for a vegetated
rough surface is given as

5 -2, 4klslcos’ g,
spec _ ¢,k
Wr=I T, e e ' (A2)

where I, and I’ are the Fresnel reflection coefficients of the flat surface in the incident
and the scattered (specular) direction respectively. The asterisk (*) over T, denotes its

complex conjugate. Earlier in Section IIIA we used R, and R, to denote the reflection
coefficients which is real part of I . The diffused albedo from a vegetated rough surface

is contributed both by the vegetation and the rough surface. It can be expressed as sum of
the vegetation and rough surface albedos. Mathematically, either one of the latter can be
obtained by integrating the scattering coefficients over the hemisphere above the scene as
(Chauhan et al., 1994)

I
w(:bg = <
4 cosd,

[log, 0.y + 02, (a1)] d@, (A3)
where o“(0,i) are bistatic scattering coefficients of the vegetation or the rough surface.

These are calculated using distorted Born approximation (Lang and Sidhu, 1983) and
Kirchhoff’s rough surface approach (Ulaby et al., 1982) for the vegetation and rough
surface, respectively. The integration is carried over the upper hemisphere where

dQ =sin8 d8 de_ . Assuming that the scattering from the rough surface and vegetation

canopy are independent, Eq. (A1) can be rewritten as
T, ={- W WY +WiIT (Ad)
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diff

where W, ™ and meer denotes diffused albedos from the surface and vegetation

respectively. More details about the emission model can be found in Chauhan et al.
(1994).

The above model gives excellent results and has been validated for a variety of land
covers such as corn, grass and forest (Chauhan et al., 1994; Saatchi et al., 1994; Chauhan
et al., 1999). The model is difficult to invert due to the presence of diffused scattering
terms from rough surface and vegetation. However, the model can be simplified and
made invertible if the diffused albedo W due to surface as well as due to vegetation,
can be assumed negligibly small. This condition can be satisfied if the terrain is lightly
vegetated and/or have low surface roughness conditions, Therefore, equation (Al) is
simplified as

A (ot ey
T,=T(1-|RY|" e e ") (AS)

Above equation is identical to Equation (3) given earlier in Section IIIA. In the above
2
equation 'Rfl =T T

-
L/l 7

It is assumed in (A1) that the atmospheric and sky contributions to T, are small and are
negligibly small. Microwave brightness temperatures from space are modified by
atmosphere. Short-term comparisons of Tg are generally valid at low frequencies;
however, over longer periods (seasonal or yearly) it is necessary to take atmosphere into
account. As noted by Choudhury (1993), the magnitude of the effect of atmosphere at
mid-latitudes at 19 GHz can of the order of +3K. CMIS frequency used for the soil
moisture retrieval process for NPOESS is likely to be lower than 19 GHz. As a result,
atmospheric contribution to brightness temperature will be negligibly small.
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APPENDIX B
ACCURACY, PRECISION AND UNCERTAINTY -~

We have followed the following definitions given in the NPOESS (1999) document.
Accordingly, the measurement accuracy A is defined as

A=lu-TI

where

i N
v

i=1

‘L[:

and L is the average of all the measured values X, corresponding to a true value T. The

precision P, as defined in NPOESS (1999),_is the standard deviation of the measurements
from their average value and is expressed as

P=\[§5§(x.-pf

Finally, the uncertainty is defined as

U =J£ﬁ-i(xf -T)

=1

From the above definition, one can write
U=+A*+P?

Thus, the uncertainty equals the RMS error between the measurements X, and the true

value T. It is important to note here that precision and accuracy are quite different
yardsticks for characterizing data quality. :
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TABLE 1.
SOYBEAN CANOPY PARAMETERS*

Canopy height 60 cm

| Plant density 1000 /m**3

Radius 4cm

Thickness 0.2 mm

Density 1000 /m**3

Dielectric Constant 25.3 +7.96

| Inclination Angle Uniform

* These parameters are derived from actual measurements carried out in a
field experiment conducted at the Beltsville, MD USDA facility.
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TABLE II
ERROR BUDGET FOR THE SOIL MOISTURE
ESTIMATION ALGORITHM (%)

Microwave Resolution:

Algorithm Error (E,, ):

Bare smooth 0.0005
Vegetated 3.6
Bare rough 3.7
Bare low rough 0.5

Accuracy & Precisionerror (E,,) <1
High Resolution:
Regression Error (E, ) 1.6

Precision Error ( E , ):

LST 0.338
NDVI 1.57
Albedo 0.722




FIGURE CAPTIONS

Figure 1. Schematic flow diagram for soil moisture estimation algorithm.

Figure 2. Universal Triangle - Schematic relationship between soil moisture
temperature and NDVI.

Figure 3. Soil moisture map of the SGP-97 area estimated from SSM/I data (25-km
resolution) for four days.

Figure 4. A plot of soil moisture for SSM/I pixels (25-km resolution) in the SGP-97 area
for four days.

Figure 5. Soil moisture map at 1-km resolution of the SGP-97 area. There is a
decreasing trend in soil moisture from June 29 to July 2. Note also that the northern
area of the SGP-97 shows higher soil moisture compared to south.

Figure 6. A pixel value plot of soil moisture at 1-km resolution in the SGP-97 area for
four days. Soil moisture range varies from 5-20 percent. One-to-one correspondence is
observed between the data shown in figures 6 and 4 .

Figure 7. Location of three sites where in-situ soil moisture measurement were
conducted during the SGP-97 experiment.

Figure 8. An example of spatial variability in 0-5 cm soil moisture in a particular
field at Little Washita. The variability appears to be consistent for all the four days
considered in the present study.

Figure 9. (a) An example of temporal and spatial variability in 0-5 cm soil moisture
measured at the SGP-97 area. Point measurements from each location such as LW
are averaged from the data collected from many fields in LW, LW and CF are
located at south and north edge of the SGP-97 experimental area. (b) Retrieved
surface soil moisture averaged over three locations for June 29-30, July 1-2, 1997.
The averaging is done in a Skm x 5km area for a particular location. Note that the
number and size of pixels averaged in (a) and (b) are not identical .

Figure 10. Microwave soil moisture inversion results for four different land surfaces.
Dual polarization inversion is used.

Figure Al. Schematic representation of the emission model for vegetated terrain
based on Peake’s approach.
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